A SYSTEMATIC REVIEW: FABRIC DEFECT DETECTION SYSTEM

Authors

  • Akinbiyi Olayemi Apara Department of Computer Science, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State, Nigeria.
  • Adekunle Adeoye Eludire Department of Computer Science, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State, Nigeria
  • Oluwafemi Omoniyi Abe Department of Computer Science, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State, Nigeria

Keywords:

fabric defect, manual inspection, quality control, defect detection, textile inspection

Abstract

This paper presents a comprehensive literature review of fabric defect detection methods. These defect detection methods are systematically classified into nine categories: Structural, Statistical, Spectral, Model-based, GLCM-Based, Learning, Sparse- Based Operation, Deep Learning Based and hybrid. Evaluation of these methods is conducted based on criteria encompassing accuracy, computational cost, reliability, rotational/scaling invariance, online/offline operational capabilities, and sensitivity to noise. These Methods are robust and efficient fabric defect detection methods which are required to develop automated inspection techniques. The paper aims to provide a nuanced understanding of the efficacy of various fabric defect detection methodologies, offering insights into their strengths and limitations across diverse criteria. Fabric defect detection is a critical aspect of quality control in textile manufacturing, as it directly impacts the final product's quality while eliminating Manual inspections process which is lacking accuracy and it is time consuming

References

R. Meier, J.Uhlmann, R. Leuenberger Uster Fabriscan: The automatic inspection system for fabrics (2000)

M. Islam, A. Azam Rokon, M. Chowdhury Rubel , M. Ahmed, A.Islam Investigation on Comfort Properties of Conventional Cotton and Organic Cotton of Knitted Fabric Structures Manufacturing Science and Technology 2(3): 62-66, 2014 http://www.hrpub.org DOI: 10.13189/mst.2014.020303 (2014)

B. Fang, X. Long, F. Sun, H. Liu, S. Zhang, and C. Fang, Tactile-Based Fabric Defect Detection Using Convolutional Neural Network With Attention Mechanism. IEEE Trans. Instrum. Meas., vol. 71, pp. 1-9, (2022)

J. J. Bullon, A. Gonzalez, A. H. Encinas, A. Queruga-Dios Manufacturing processes in the textile industry. Expert System for fabrics production – ADCAIJ ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELIGENCE JOURNAL 6(4):15- DOI: 10.14201/ ADCAIJ2017641523 (2017).

A. Dosovitskiy , L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J.Uszkoreit, N. Houlsby AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. Published as a conference paper at ICLR 2021 (Dosovitskiy et al., 2020).

Y. Wu, J. Zhou, N. T. Akankwasa, K. Wang, and J. Wang, “Fabric texture representation using the stable learned discrete cosine transform dictionary,” Textile Research Journal, vol. 89, no. 3, pp. 294–310, 2019.

L. Mak, P.P., Yiu, K.F.C.: Fabric defect detection using morphological filters. Image Vis. Comput. 27(10), 1585–1592 (2009).

Junpu Wang, F.Y.J.W.Z.W. Guili Xu: Transformer-based encoder-decoder model for surface defect detection. Association for Computing Machinery 211, 125–130 (2022).

S. Chakraborty, M.M., Parrillo-Chapman, L.: Automatic defect detection for fabric printing using a deep convolutional neural network. Int. J. Fash. Des. Technol. Educ. 15(2), 142–157 (2022).

Xie, H., Wu, Z.: A robust fabric defect detection method based on improved refinedet. Sensors 20(15) (2020).

V. Agrawal, J. Jagtap, P. Kantipudi Decoded-ViT: A Vision Transformer Framework for Handwritten Digit String Recognition - doi.org/10.18280/ria.380215 (2024)

A. Vaswani,N. Shazeer, N. Parmar, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.

T. Almeida, f. Moutinho, j. P. Matos-carvalho - Fabric Defect Detection With Deep Learning and False Negative Reduction- Digital Object Identifier 10.1109/ACCESS.2021.3086028

W. Ouyang, J.H. B. Xu, Yuan, X.: Fabric defect detection using activation layer embedded convolutional neural network. IEEE Access 7, 70130–70140 (2019).

N. Yuldoshev, B. Tursunnov, S. Qozoqov Use of artificial intelligence methods in operational planning of textile production – Journal of process Management New Technonogies 6 (2):41-51-DOI: 105337/juproman6-17221.

J. Zhang, S. Budhdeo, W. William, P. Cerrato, H. Shuaib, H. Sood, H. Ashrafian, J. Halamka and J. T. Teo Moving towards vertically integrated artificial intelligence development- npj Digital Medicine (2022) 5:143 ; https://doi.org/10.1038/s41746-022-00690-x .

K. Shaheed, I. Qureshi, F. Abbas,S. Jabbar, Q. Abbas, H. Ahmad,M. Zaheer Sajid EfficientRMT-Net—An Efficient ResNet-50 and Vision Transformers Approach for Classifying Potato Plant Leaf Diseases /doi.org/10.3390/ s23239516 (2023).

Qiang Liu, Chuan Wang, Yusheng Li, Mingwang Gao, and Jingao Li A fabric defect detection method based ondeep learning - DOI 10.1109/ACCESS.2021.3140118, IEEE.

K. Hanbay, M. F. Talu, and O ̈ F. ̈O F.ay/, “Fabric defect detection systems and methods-A systematic literature review,” Optik, vol. 127, no. 24, pp. 11960–11973, 2016.

Aqsa Rasheed, Bushra Zafar, Amina Rasheed,3Nouman Ali ,1 Muhammad Sajid, Saadat Hanif Dar,1 Usman Habib ,5 Tehmina Shehryar,1 and Muhammad Tariq Mahmood - Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive Review (2020)

Ali GEZE, Ayhan AKBAŞ- Detection and Classification of Fabric Defects Using Deep Learning Algorithms (2023).

K. Sharath Kumar, M. Rama Bai LSTM based texture classification and defect in a fabric- Mesurement Sensors 26 (4) 100603- DOI: 10.1016/ J.measen.2022.100603 (Kumar and Bai 2023)

H. Cui, C. Xu Study on the Relationship between Textile Microplastics Shedding and Fabric Structure- Polymers 14(23):5309- DOI: 10.3390/polym14235309 (2022)

O. Rippel C. Zwinge, D. Merhof Increasing the Generalization of Supervised Fabric Anomaly Detection Methods to Unseen Fabrics. doi.org/10.3390/ s22134750 (2022).

T. Zhou, J. Zhang, H. Su EDDs: A series of Efficient Defect Detectors for fabric quality inspection-Measurement 172(1):108885 DOI:10.1016/j.measurement.2020.108885 (2021)

P.M Mahajan, S.R Kolhe, P.M Patil A review of automatic fabric defect detection techniques -Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009, pp-18-29 Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009).

C.N. Anagnostopoulos, D. Vergados, E. Kayafas, Vassili Loumos, G. Stassinopoulos A computer vision approach for textile quality control, The Journal of Visualization and Computer Animation 12(1):31 – 44, DOI:10.1002/vis.245 (2001)

A. Abouelela, H. M. Abbas, H. Eldeeb, A. A. Wahdan, S.M.Nassar Automated vision system for localizing structural defects in textile fabrics-Pattern Recognition Letters 26(10):1435-1443n DOI:10.1016/j.patrec.2004.11.016 (2005)

C. Duchesne, J. Liu, J. MacGregor, Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems, Volume 117, p. 116–128 (2012.)

R.M. Haralick Statistical and structural approaches to texture. Proc IEEE 67:786-804 Proceedings of the IEEE 67(5):786 – 804 DOI:10.1109/PROC.1979.11328 ( 1979)

S. Beak;Y.-H Han.; Y. Moon ;J Lee; J. Jeong YOLOv7-Based Anomaly Detection Using Intensity and NG Types in Labeling in Cosmetic Manufacturing Processes. Processes 2023, 11, 2266. https:// doi.org/10.3390/pr11082266

K. Hanbay, M.F. Talu Kumas, hatalarının online/offline tespit sistemleri ve yöntemleri, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi [S.l.] 18 1 (2014) 49–69.

J. L. Raheja, B. Ajay, and A. Chaudhary, “Real time fabric defect detection system on an embedded DSP platform,” Optik, vol. 124, no. 21, pp. 5280–5284, 2013.

X. Luo, Q. Ni, R.Tao and Y. Shi A Lightweight Detector Based on Attention Mechanism for Fabric Defect Detection - Article has been accepted for publication in IEEE Access. Citation information: DOI 10.1109/ACCESS.2023.3264262

J. Wang, J. Zhang, R. Pan, J. Zhou, and W. Gao, “A computer vision-based system for automatic detection of misarranged warp yarns in yarn-dyed fabric: part I: continuous segmentation of warp yarns,” ;e Journal of the Textile Institute, vol. 109, no. 5, pp. 577–584, 2018

(Wang et al., 2018)

J. Wang, J. Zhang and R. Pan, “A computer vision-based system for automatic detection of misarranged warp yarns in yarn-dyed fabric: part II: warp region segmentation,” ;e Journal of the Textile Institute, vol. 110, no. 9, pp. 1359–1367, 2019.

K. Muhammad, J. Ahmad Irfan, M. Seungmin, R. Sung, W. Baik Convolutional Neural Networks Based Fire Detection in Surveillance Videos IEEE Access PP(99):1-1 DOI :10.1109/ACCESS.2018.2812835 (2018)

F. Jiang, M. Qin, Y. Xi A New Improved Convolutional Neural Network Flower Image Recognition Model DOI:10.1109/SSCI44817.2019.9003016

L. M. Azizah, S.Fadillah, U. Cahya, D. Nafi. A.Utama Deep learning implementation using convolutional neural network in mangosteen surface defect detection- Conference: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)¬- DOI:10.1109/ICCSCE.2017.8284412 (2017)

A.Ghosh, T. Guha, R.B. Bhar, S. Das Pattern Classification of fabric defects using, support, vector machines- international journal of clothing science and technology 23(2-3):142-151(2011)

W. Eng, V. Koo, and T. Lim, “IPDDF: an improved precision dense descriptor based flow estimation,” CAAI Transactions on Intelligence Technology, vol. 5, no. 1, pp. 49–54, 2020

J. Zhou, D. Semenovich, A. Sowmya, and J. Wang, “Sparse dictionary reconstruction for textile defect detection,” in Proceedings of the 2012 11th International Conference on Machine Learning and Applications, pp. 21–26, Boca Raton, FL, USA, December 2012

N. Kriegeskorte, “Deep neural networks: a new framework for modeling biological vision and brain information processing,” Annual Review of Vision Science, vol. 1, no. 1, pp. 417–446, 2015.

N. Kriegeskorte and T. Golan, “Neural network models and deep learning,” Current Biology, vol. 29, no. 7, pp. R231–R236, 2019. (Kriegeskorte and Golan 2019).

L.-W. Han, D. Xu, Statistic learning-based defect detection for twill fabrics, Int. J. Autom. Comput. 7 (2010) 86–94.

H.Y.T. Ngan, G.K.H. Pang, S.P. Yung, M.K. Ng, Wavelet based methods on patterned fabric defect detection, Pattern Recognit. 38 (2005) 559–576.

H.Y.T. Ngan, G.K.H. Pang, Defect detection on patterned objects, in: Mechatronic systems—Devices, Design, Control, Operation, and Monitoring.

Downloads

Published

2025-06-12

How to Cite

Apara , A. O., Eludire, A. A., & Abe, O. O. (2025). A SYSTEMATIC REVIEW: FABRIC DEFECT DETECTION SYSTEM. Irish International Journal of Engineering and Scientific Studies, 8(3), 53–65. Retrieved from https://aspjournals.org/Journals/index.php/iijess/article/view/1205

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.