Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 - 6345 Impact Factor: 4.1

Advance Scholars Publication Published by International Institute of Advance **Scholars Development** https://aspjournals.org/Journals/index.php/ijees

THE IMPACT OF MATERIAL MANAGEMENT PRACTICES ON PERFORMANCE OF BUILDING CONSTRUCTION SITES IN SELECTED TERTIARY INSTITUTIONS IN CROSS RIVER STATE, NIGERIA

Efagwu, Christian Emeke

Department of Quantity Surveying, Enugu State University of Science and Technology, Enugu E-mail: chris.fastmails@gmail.com

Keywords: Material

Management practice, performance, building construction sites, Tertiary institution

Abstract: This work is titled the impact of material management practice on building construction sites in tertiary institutions in Cross River State. The aim of this study is toevaluate the impact of material management practices on building construction sites in selected tertiary Institutions in Cross River State with a view to enhancing effective and efficient management of materials in building construction projects. The objectives are; to identify the causes of ineffective material management process to the construction project delivery; to evaluate the impact of material mismanagement in the building construction sites. The study adopted stratified random sampling techniques, 200 copies of questionnaire were given to respondents drawn from a population of 432. This study adopted survey research design using questionnaire as instrument for data collection and bill of quantities. The findings of the study reveals that the causes of ineffective material management process to the construction project delivery in tertiary institution in cross river state includes; incompetency of the project manager; design error; loss of fiancé; ineffective construction manager; poor planning; lack of pre and post investigation under design and improper supervision; varied labour equipment; lack of legal penalty to offenders and rush work. Finally, the study indicates that cost has a positive relationship with construction delivery in tertiary institutions in Cross River State. Time has a positive relationship with construction delivery in tertiary institutions in Cross River state. Quality has positive relationship with the construction delivery in tertiary institutions in Cross River state. This implies that a unit increase in cost, time and quality will lead to increase in construction delivery in tertiary institutions in Cross River state. The study recommends that each management techniques has its own peculiarity in term of the pretender and post tender activities and processes, division of risks between client and contractors, and the effectiveness of project monitoring and control.

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345

Impact Factor: 4.1

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

INTRODUCTION

Construction material constitutes a major cost component in any construction project. The cost of materials may be 50% to 70% of the total construction cost depending on type of projects (Patil and Pataskar, 2013, Gulghane and Khandve, 2015). Several researchers provided different definitions for material management, therefore different definitions can be found in different references but Kanimozhi and Latha (2014), define materials management as a process for planning, executing and controlling field and office activities in construction. Zeb, Malik, Nauman, Hanif, and Amin (2015) also define material management as a procedure for planning, and controlling executing, site activities in the construction project(s).

According to Ramus and Birchallin Matt Viator (2020), the causes of losses to contractors may arise from any one of the following: inefficient deployment of resources; excessive wastage and theft of materials; plant being allowed to stand idle or under-utilized; adverse weather or working conditions; and under-pricing of tender documents by assumptions in regard to labour times, types and sizes of plant which do not equate with the realities of the construction work. The success of a project is judged by meeting the criteria of cost, time, safety, resource allocation, and quality as determined by the owner (Viator, 2020). The purpose of construction project management is to achieve goals and objectives through the planned expenditure of resources that meet the project's

quality, cost, time, scope, and safety requirements.

The construction manager must control, deflect, or mitigate the effects of any occurrence or situation that could affect project success. The major tasks in construction management planning, organizing, scheduling, include implementing, managing, monitoring, controlling, and tracking construction projects. It is essential therefore, for construction activities to be accomplished successfully in an effective and efficient way. This requires various strategic and management capabilities such as material management. Material management according to Oyeoku (2011) is defined as a process which involves grouping the business functions relating to the inflow and interplant movement of materials under a head who is in a position to coordinate and correlate individual departmental decisions in a manner which results in the most efficient allocation of organizations Unfortunately, resources. material management in construction process has recently been neglected and this has undoubtedly led to huge amount of material waste while executing construction projects. Obiegbu (2012) lamented that material wastage on construction site has become a canker worm in Nigerian construction industry. This problem according to Obiegbu (2012) has negatively affected the performance of many projects in Nigeria.

In Nigeria, many have expressed concern over poor materials management and its impacts on

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

the execution of construction projects. Onukwube (2010) lamented that poor material management can result in substantial, but avoidable financial loss during construction. It is pertinent to mention that there are grave consequences that could result from poor materials management, which could result in insufficiency of material for production on site, forcing contractors to produce non-conforming products.

Material management has always neglected by many construction firms in Nigeria especially the indigenous construction firms (Olatunji and John, 2013). This according to Olatunji and John, (2013) has been a major factor contributing to material waste in the construction sites and poor delivery of projects by the construction firms in the country. It is against this background that Onukwube (2010) earlier advised that construction firms in Nigeria especially the indigenous firms should endeavour to cultivate adequate and holistic material management practices in handling various construction projects so as to ensure their sustainability and subsequently avoid collapse of these projects. To this note, construction firms especially those operating in tertiary institutions in Cross River State are not exempted from the problem.

On the basis of the above, this research is an attempt to explain the impact of material management issues on building projects in Federal College of Education Obudu and Cross River State University of Technology (CRUTECH).

STATEMENT OF THE PROBLEM

In Cross River state, there is a huge concern over poor materials management and its impacts on the execution of building construction projects. There is therefore, dire to improve productivity construction industry and at the same time to conserve our foreign exchange now more than ever before. Kontangora in Okeke Mbabuike (2020) stated that unless the managers in our building construction industry improve on their capabilities in terms of the management of materials, labour equipment will always have low productivity in the Nigerian construction industry.

It is however fast becoming a norm in construction sites that the allowable waste is far exceeded by the actual waste on construction sites. Theft, vandalism, high interest rates, and improper planning make contractors in the construction industry to fall short of their anticipated profit margins in their projects.

There is no established construction material management system in tertiary institutions in Obudu Cross River State (Okanume, 2021). The management practices by materials contractors in the institution are performed on a fragmented basis with unstructured communication and no clearly established responsibilities between the parties involved. This fragmentation creates gaps in information flow, which affects the decision making process and lead to delays in material ordering and receiving, among other problems (Thomas and Okanume, 2021).

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1

Manual materials management and control procedures are unsatisfactory as they are labour intensive, inaccurate, and error prone. The implication leads to waste and surplus of materials, delays, decrease in productivity and lack of up-to-date and real-time information (Navon, 2021).

Considering the construction firms in tertiary institutions in Cross River State, it appears that the managers or perhaps the contractors lack competencies required of contemporary construction firms for effective material management thereby resulting in huge amount of material waste (Viator, 2020). The resultant effect of the poor material management in the construction process by these construction firms leads to poor performance in terms of their service delivery. No research has been conducted to investigate the materials management issues on building project of contracting companies in tertiary institutions in Cross River State. This study has become pertinent to explore the actual situation in these firms for objective remedial actions.

AIM AND OBJECTIVES

The aim of this study is to evaluate the impact of material management practices on building construction sites for improving the performance of building projects executed in selected tertiary institutions in Cross River State.

The objectives of the study are:

1. To identify the causes of ineffective material management process to the construction

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

- project site in selected tertiary institution in Cross River State.
- 2. To evaluate the impact of material mismanagement in the building construction sites in selected tertiary institution in Cross River State.

RESEARCH QUESTION

The following research questions will guide the study:

- 1. What are the causes of ineffective material management process to the construction project delivery in selected tertiary institution in Cross River State.
- 2. What impact does material mismanagement have on building construction sites in selected tertiary institution in Cross River State.

STATEMENT OF HYPOTHESIS

Ho: There is no significant relationship between factors affecting material management and effective building construction project delivery.

H₁: There is significant relationship between factors affecting material management and effective building construction project delivery.

LITERATURE REVIEW

Concept of Construction Industry

Construction industry plays an important role in socio economic development of any nation. The activities of the construction industry have a lot of significance to the achievement of national socio-economic development goals of providing infrastructure, sanctuary and employment. This also includes hospitals, schools, townships, offices, houses and other buildings; urban infrastructure (including water

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

supply, sewerage, drainage); highways, roads, airports; power railways, systems; agriculture irrigation and systems; telecommunications and so on (Kasimu, 2015; Uma and Eboh, 2013). The construction industry holds an immense potential for stimulating growth, boosting project exports and generating employment. The domestic construction segment happens to be one of the fastest growing segments, with an impressive average growth of 7-8 per cent per annum (Ofori, 2010).

The foundation of a higher growth rate rests on efficient infrastructural sound and development which makes the construction segment a key sector. The rapid expansion of infrastructure by both government and the private sector has triggered off construction activities and fuelled demand in many key sectors like cement, steel, paints and chemicals, glass, timber and earth moving equipment and machinery (Jacobson and Wilson, 2012). The construction sector is a crucial industry having strong backward and forward growth linkages. It deals with all economic activities directed to the creation, renovation, repair or extension of fixed assets in the form of buildings, land improvements of an engineering nature. Besides, the construction industry generates substantial employment and provides a growth impetus to other sectors through backward and forward linkages.

Unlike earlier days, today the construction industry have become highly complex due to the technological developments, globalization,

uncertain economic conditions, social pressures, political instability and so on (Walker, 2015). The conventional methods are incapable to meet with the demands of today's environment that is described by the authors as being more dynamic and filled with greater uncertainty (Keith, 2016). With the increasing complexity and uncertainty, project delivery is not only management of three project constraints: cost, scope and time, but perceive it to be an assessment of the uncertainty within which the project is operating and its continuing ability to respond to the reason why it was needed in the first place (Melton and Iles-Smith, 2021). Effective delivery is all about the control and management of uncertainty. Therefore, one needs to identify the uncertainty related to the project and sculpt the best strategy to deliver the project so that the chances of success are increased.

Concept of Building Construction Project

The Building construction industry contributes significantly in terms of scale and share in the development process for both developed and developing countries. The construction products provide the necessary public infrastructure and private physical structures for many productive activities such as services, commerce, utilities and other industries. The industry is not only important for its finished product, but it also employs a large number of people (directly and indirectly) and therefore has an effect on the economy of a country/region during the actual construction process (Aluko, 2017).

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

The National Bureau of Statistics (NBS) put Nigeria's post-re-basing contributions of the construction sector to Gross Domestic Product at N5.7 billion in three years. NBS, in its summary report of 2010, 2011 and 2012 fiscal years on the Construction industry disclosed that in 2010, the sector contributed N1.570 billion, a value which leaped by 21.30 per cent to reach N1.905 billion in 2011. The industry's contributions closed at N2.188 billion in 2012, bringing the total contribution of the sector to GDP to N5.7 billion and 2017 report shows that the sector recorded a 13 percent growth. Construction activities captured in the report include construction of buildings, roads, railways as well as civil engineering projects (Fagbeni, 2016). Others are construction of utility projects, demolitions as well as site preparations, among others. The NBS added that part of the increased contributions of the sector to the nation's GDP, was its ability to capture all economic activities in the sector (Harman, 2017).

Concept of Building Material

Building material are materials used for constructing building. It comprises of sand chippings/ stone, wood, nails, clay, ladder, plywood, doors, reinforcement, cement, sharp sand, blocks, soft sand etc. building and construction are the ore upon which infrastructural development of any nation rest. How much we build is a function of building material available and the quantity of it available. Moreover, the durability and quality of a building also depend on material and its quality. However, the quality and quantity of material used are functions of cost of building materials (Njoku, 2017). Cost of building materials refers to the money cost of each building materials or cost of acquiring the materials and labor cost.

One obvious problem militating against the ability of the building industry in Nigeria from delivering quality and affordable housings and buildings is costs of building materials (Mekson, 2018). People find it difficult building houses because of cost of materials. The problem has become enigma in the building industry. In the past one or two proactive measure has been taken to address the escalating and uncontrollable rise in the cost of building materials. It was for these reasons the Nigeria Building and road research institute (NBRRI) was established in 1978. The institute was mandated to workout alternative source(s) of building materials that will be cost effective and serve as a perfect substitute to the escalating cost of building materials (Saba, 2018). It is important to note that NBRRI mandate was on how to develop quality and suitable building materials using mineral deposits and agroindustrial waste found in Nigeria at little or no cost.

Concept of Building Material Management

When managing construction waste, it is important that practices reflect the waste hierarchy with waste prevention and minimization being the top priority followed by reuse and recycling. The primary aim is to

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

prevent waste generation in the first place which minimizes the resources required to complete the job. Preventing waste is financially advantageous because it reduces the amount of materials being purchased and removes the need to transport waste off site. Waste prevention should be considered throughout all stages of the project especially during the design stage (Vaidya, 2009). This stage of the project offers the biggest opportunity to reduce waste by prioritizing waste prevention from the beginning of the project. During construction phase, waste prevention can be carried out by ensuring that large volumes of materials are not delivered to site and through the use of a just-in-time delivery system. On the site waste can be minimized by careful storage, handling and the setting up of a central cutting station for some trades.

Trigunarsyah, Sofyan & Hendi (2006) identifies the three R's in construction waste management follows: reuse, involving salvaging as construction waste for other uses, recycling, involving transforming waste into new products and reincorporating them into the construction and reduction. which process involves preventing or minimizing the generation of waste in the first place. (a) Reduce the first and most important step in cutting the amount of waste is reducing the quantity that is actually produced in the first place. There are a number of ways in which waste can "designed out" just by reviewing how works are designed and installed. By planning work properly at the outset of a project, the amount of materials that end up as waste at the end of it can be greatly reduced (NSCC, 2008). (b) Reuse In today's industry, it is simply no longer justifiable to throw away perfectly good materials. As part of managing waste, builders should consider how to make use of common surplus materials arising from projects such as bricks and timber off-cuts either on the same site or at other sites. Where this is not possible, they should liaise with their suppliers about returning the materials to them.

THEORETICAL FRAMEWORK Construction Management theory:

Theory of construction management (2012), proposed a theory of construction management which identifies the actions which construction projects and companies to be efficient. It takes on the challenge of creating a precise, tightly defined model of construction management (CM), using five clearly differentiated methods for the delivery of building and construction projects. It is an ambitious and intellectually bold attempt to introduce new thinking into the field. What they don't do is draw on any of the many theories of management or production available. On one hand this seems to be an extreme case of exceptionalism - that construction is different from all other industries - school of thought. In their defense, on the other hand, Radosavljevic and Bennett (2002) argue that construction is different, because it is complex: projects have a number of interacting teams where outcomes in the future depend on the number of involved

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

teams, the quality of relationships between interacting teams and their performance variability. In addition there is also unpredictable interference which may arise from numerous external factors.

In theory of CM the authors aims are to provide a "rigorous theory" based on a "tool kit of concepts and relationships" that will improve the efficiency and quality of "construction distinction products". The between conventional approach of CM. where contractors deliver projects, and the idea of companies producing a product is an important element in the thinking behind the theory proposed here. A related aim of the book is therefore to raise the viewpoint of CM from projects to the companies that manage projects.

Following that intention they "identify and define the concepts needed to understand CM".

Research Design

The descriptive survey research design was used for the study. Nworgu (2015) defined the descriptive survey research design as one in which a group of people or items is studied by collecting and analyzing data from only a few people or items considered to be representative of the entire group. This design was considered appropriate for this study because the study seeks opinions of the construction professionals on the material management and its possible influence on the performance of building construction companies in selected tertiary institutions in Cross River State.

Table 4.1 Population Distribution of the Classes of the Respondents

PROFESSIONALS	CONTRACTORS	CONSULTANTS	POPULATION
			(CONTRACTOR)
			(CONSULTANTS)
CIVIL ENGRS	60	50	110
MECHANICAL ENGR	5	8	13
ELECTRICAL ENGRS	4	6	10
ARCHITECTS	87	120	207
QUANTITY SURVRS	25	19	44
PROJECT MANAGER		20	20
BUILDER	13		13
SITE MANAGERS	10		10
LAND SURVEYORS	5		5
TOTAL			432
	CIVIL ENGRS MECHANICAL ENGR ELECTRICAL ENGRS ARCHITECTS QUANTITY SURVRS PROJECT MANAGER BUILDER SITE MANAGERS LAND SURVEYORS	CIVIL ENGRS 60 MECHANICAL ENGR 5 ELECTRICAL ENGRS 4 ARCHITECTS 87 QUANTITY SURVRS 25 PROJECT MANAGER BUILDER 13 SITE MANAGERS 10 LAND SURVEYORS 5	CIVIL ENGRS 60 50 MECHANICAL ENGR 5 8 ELECTRICAL ENGRS 4 6 ARCHITECTS 87 120 QUANTITY SURVRS 25 19 PROJECT MANAGER 20 BUILDER 13 SITE MANAGERS 10 LAND SURVEYORS 5

Source: Field Survey, 2022

Model Specification

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

According to Jhingan, (1997) an economic model is an organized set of relationship that describes the functioning of an economic identity under a set of assumptions from which the conclusion or set of conclusions is logically derived.

The specification of the econometrics model is usually based on economic theory and on any available information relating to the phenomenon being studied (Koutsoyiannis, 1977)

This study shall build a multiple regression model and make use of econometrics procedure in estimating the relationship between my economic variables.

The functional form of the model is specified as follows.

PBCP = f (DMM,								
CMM)3.1								
The econometric form of the model is as follows								
$PBCP_t = \beta_0 + \beta_1 DMM_t + \beta_2 CMM_t + $								
μ3.2								
Where,								
PBCP= real gross domestic product i.e.								
(constant price GDP)								
f = functional relationship								
DMM = Design mismanagement								
CMM = Contractual material mismanagement								
β_0 = Constant term								
β_1 , β_2 , β_3 and β_4 = parameter coefficients								
μ= Error term								

Presentation of Data

Data on questionnaire response as well as socio-economic characteristic of respondents were presented in this section.

t = Time period

DDCD

Base Data of respondents

Group	Popul ation	Sam ple Size	Questionna ire distributed	Questionna ire Returned	Questionnai re not returned	Percentage of Questionnair e Returned
Selected Tertiary institution in Cross River	432	208	208	200	8	96.15%

The above table shows that a total of 208 copies of questionnaire were administered. A total of 200 were completely field and returned while 8 questionnaires were not returned by the respondents.

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

Analyses of the First Objective

To identify the cause of ineffective material management process to the construction

project delivery in Tertiary Institution in Cross River State?

S/N	Causes of ineffective material		SA				∑FX	\overline{X}	DECISION
	management process to the	W	SD		0	_			
	construction project delivery		4	3	2	1			
1	Incompetence of the project manager	F WF	90 360	80 240	20 40	10	200 650	3.25	ACCEPT
2	Design error	F WF	88 352	78 234	22 44	12 12	200 642	3.21	ACCEPT
3	Loss of finance	F WF	86 344	76 228	20 40	18 18	200 630	3.15	ACCEPT
4	Inefficient construction management	F WF	84 336	74 222	22 44	20 20	200 622	3.11	ACCEPT
5	Poor planning	F WF	82 328	72 216	20 40	26 26	200 610	3.05	ACCEPT
6	Lack of pre and post investigation, under design and improper supervision	F WF	80 320	70 210	22 44	28 28	200 602	3.01	ACCEPT
7	Lack of pre and post investigation, under design and improper supervision	F WF	78 312	68 204	22 44	32 32	200 592	2.96	ACCEPT
8	Varied labour equipment	F WF	76 304	66 198	20 40	38 38	200 580	2.90	ACCEPT
9	Lack of legal penalty to offenders	F WF	74 296	64 192	22 44	40 40	200 572	2.86	ACCEPT
10	Rush Work	F WF	72 288	62 186	20 40	46 46	200 560	2.8	ACCEPT
	Grand Total							3.10	ACCEPT

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

The table above shows the opinion of the respondents on the causes of ineffective material management process to the construction project delivery in tertiary institution in cross river state includes; incompetency of the project manager; design error; loss of fiancé; ineffective construction manager; poor planning; lack of pre and post investigation under design and improper supervision; varied labour equipment; lack of legal penalty to offenders and rush work. This goes with a mean index value of 3.25; 3.21; 3.15;

3.11; 3.05; 3.01; 2.96; 2.90; 2.86 and 2.80 respectively. Based on the result, the researcher firmly concludes that the identified items are the causes of ineffective material management process to the construction project delivery in tertiary institution in Cross River state.

Regression Techniques

Dependent Variable: BCS Method: Least Squares

Date: 04/26/22 Time: 19:50 Sample (adjusted): 2015 2021

Included observations: 6 after adjustments

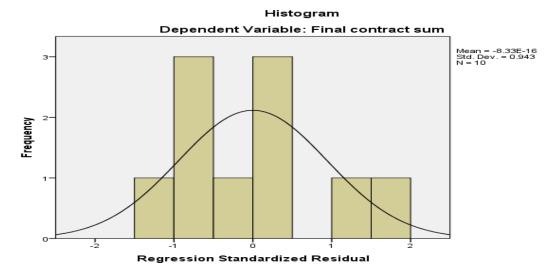
Analyses of the Second Objective
To evaluate the impact of material
mismanagement in the building
construction sites in tertiary institution
in Cross-River state.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C COST TIME QUALITY	1.753414 9.452312 2.257610 4.230011	1.404414 7.581012 6.893709 2.023312	1.248183 2.247616 3.270861 2.209519	0.2219 0.0222 0.0028 0.0355
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.658946 0.647003 1.88E+14 1.03E+30 -1230.486 4.099840 0.004245	Mean depende S.D. dependen Akaike info cri Schwarz criteri Hannan-Quin Durbin-Watso	t var terion ion n criter.	4.51E+13 2.33E+14 68.74923 69.05713 68.85670 1.455343

Source: Eviews Computations 2023

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

Advance Scholars Publication Published by

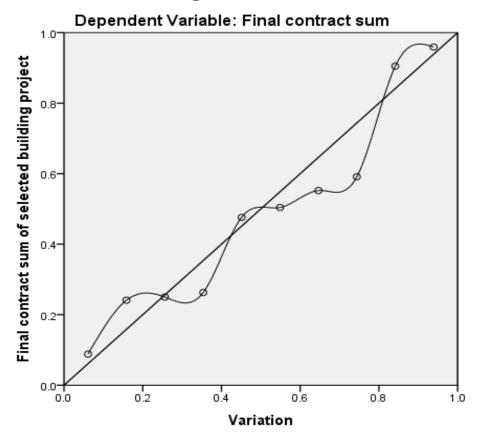

The signs of some of the variable coefficient from the estimated model are totally in line with a priori expectations. Cost has a positive relationship with construction delivery in tertiary institutions in Cross River State. Time has a positive relationship with construction delivery in tertiary institutions in Cross River State. Quality has positive relationship with the construction delivery in tertiary institutions in Cross River State. This implies that a unit increase in cost, time and quality will lead to increase in construction delivery in tertiary institutions in Cross-River State.

The constant term is estimated at 1.753414 which mean that the model passes through the point 1.753414 mechanically, if the independent variables are zero, construction delivery would be 1.753414 (Gujarati and Sangeetha, 2007).

The estimated coefficient for Cost is 9.452312, this implies that if we hold all other variables affecting construction delivery constant, a unit increase in cost will lead to a 9.452312 increase in construction delivery on the average. Likewise, the estimated coefficient of time is 2.257610 which imply that a unit increase in time will lead to a 2.257610 increase in construction delivery on the average. More so, from the result, the estimated coefficient for quality is 4.230011 which implies that unit increase in quality will lead to 4.230011 increase in construction delivery on the average.

The coefficient of determination R² from the regression result, the R² is given as 0.658946 this implies that 65.8946% of the variation in construction delivery is being explained by the variation in cost, time and quality on the average.

Histogram Plot showing how the residual are normal distributed around the mean value


Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

From the result of the histogram plot which shows how the residuals are evenly spread around the mean value. The table shows that the mean value of the residual is -8.33E-16; the standard deviation is 0.943 and the total

number of the observed projects are 10. From the histogram plot, we can firmly believe that the residuals are evenly spread around the mean value of -8.33E-16.

Plot 5.2 Normality P-P Plot of regression standardized residual

Normal P-P Plot of Regression Standardized Residual

The normal P-P plot of the regression standardize residual is confirmation of the normality of the residual as rightly indicated by the histogram plot. As we can see from the plot, the series of the residuals are fluctuating around the residual mean value which shows that the output the of the regression output is a true representation of the reality. More so, it shows that the estimated parameters can be used for future making future forecast.

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

TEST OF HYPOTHESES Hypotheses One

H_o: There is no significant relationship between factors affecting material management and effective building construction project delivery

One-Sample Test

	Test Valu	e = o				
			Sig. (2-		95% Confidence Interval the Difference	
Null Hypothesis	Т	Df	tailed)	Difference	Lower	Upper
There is no significant relationship between factors affecting material management and effective building construction project delivery.	0.013	200	.041	0.00130	0.12	0.34

Source: SPSS Computation 2021

From the test of hypothesis above using one sample test t-statistics, based on the decision rule, accept null hypothesis if the value of the t-statistics is greater than 0.05, from the result; the value of the t-statistics (0.013) is less than 0.05 hence we reject the null hypothesis and conclude that there is no significant relationship between factors affecting material management and effective building construction project delivery.

Conclusion

From the findings of the study, the research concludes that there is a contractual practice of

building material management in the construction sites in tertiary institutions in Cross River State. Also the researcher concludes that the of ineffective material causes management process to the construction project delivery in tertiary institution in cross river state includes; incompetency of the project manager; design error; loss of fiancé and several others. Finally, the study concludes that Cost has a positive relationship with construction delivery in tertiary institutions in Cross River State. has positive relationship Time construction delivery in tertiary institutions in

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1

Cross River state. Quality has positive relationship with the construction delivery in tertiary institutions in Cross River State. This implies that a unit increase in cost, time and quality will lead to increase in construction delivery in tertiary institutions in Cross River

Recommendations.

State.

Based on the findings of the study the researcher recommends

- ❖ It is very important at the very outset of the project to carefully consider all factors when selecting the most appropriate management techniques for a construction project. This is because each system has its own feature and peculiarity that will have effect on the cost, time and quality of the project i.e. the project performance.
- ❖ Each management techniques has its own peculiarity in term of the pretender and post tender activities and processes, division of risks between client and contractors, and the effectiveness of project monitoring and control.

REFERENCE

- Abdelhamid, T. S., and J. G. Everett. 2002. Physical demands of construction work: A source of workflow unreliability. Paper read at The 10th Conference of the International Group for Lean Construction (IGLC-10), August 6-8 2002, at Gramado, Brazil.
- Agapiou, A., Clausen, L. E., Flanagan, R., Norman, G. and Notman, D. (1998) The

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

- Role of Logistics in the Materials Flow Control. Construction Management and Economics, Vol. 16, No. 2, pp. 131-137.
- Arbulu, R.J., and G.H. Ballard. 2004. Lean supply systems in construction. Paper read at The 12th Annual Conference of the International Group for Lean Construction (IGLC-12), at Copenhagen, Denmark.
- Ayesha, M (2019) Reducing Material Waste With The Application Of Building Information Modelling (Bim)
- Azambuja, B. M. M, E. L. Isatto, S. T. Marder, and C. Formoso. 2006. The importance of Commitment Management to the Integration of Make to Order Supply Chains in Construction Industry. Paper read at IGLC-14, July 2006, at Santiago, Chile.
- Bailey P. and Farmer, D.(2002). Materials management Handbook, Gower Publishing Company Limited, Aldershot, Hants, England.
- Baldwin, A. & Bordoli, D., (2014). *A handbook* for Construction planning and scheduling. West Sussex: John Wiley & Sons Ltd.
- Bernold, L.E, and Tresler, J.F., (1999). Vendor analysis for Best Buy in construction, journal of construction Engineering and management,

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1

- Cheng, N. (2011). The paradox of Technological Change New Media in Old Urban Areas.

 Toronto Department of Geography,
 University of Toronto.
 (http://www.geoy.utoronto.caldeptinto/BRAILL2.html).
- Cheng, Y. M., (2014). An exploration into costinfleuncing factors on construction projects. *International Journal of Project Management*, 32(5), pp. 850-860.
- Ghanima. B (2014) Journal Of Construction Engineering Article Id 283298, 6 Pages: Study Of The Causes And Magnitude Of Wastage Of Materials On Construction Sites In Jordan
- Goodrum, M. & Haas, T. (2009). Long-term impacts of equipment technology on labour productivity in the U.S construction industry at the activity level. Journal of construction engineering and management, 1(1): 124-133.
- Griffith, A. and Watson, P. (2004). Construction management: principles and practices. Palgrave MacMillan, New York
- Habtamu M. K (2017) *International Research Journal Of Engineering And Technology*(Irjet): Construction Material Wastage
 Minimization And Management: Review
- Harmon, K.M.J. Conflicts between Owner and Contractors: Proposed Intervention Process. J. Manag. Eng. 2017, 19, 121–

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

- 125, doi:10.1061/(ASCE)0742-597X(2003)19:3(121).
- Hisham E.R, (2010) Optimizing The Planning Of Construction Site Security For Critical Infrastructure Projects
- Kasim, N. B., (2008). *Improving materials management on construction project,*Loughborough: Loughborough
 University.
- Kasim, N. B., Anumba, C. J. & Dainty, A. R., (2005). *Improving materials management practices on fast-track construction projects*. London, Assosiation of Researchers in Construction, pp. 793-802.
- Koskela, Lauri. 1992. Application of the new production philosophy to construction, Technical
 Report No. 72, Center for Integrated Facilities Engineering, Dept. of Civil Engineering,
 Stanford University, CA, September 1992
- Koskela, L. (2000) An exploration towards a production theory and its application to construction, Espoo, VTT Building Technology. VTT Publication 408
- Low, S. P. & Ong, J., (2014). Project Quality Management Critical Sucess Factors For Buildings. Singapore: Springer.

Irish J. Env. E. Sci. Volume: 8; Issue: 02, March-April, 2024 ISSN: 2383 – 6345 Impact Factor: 4.1

Volume: 8; Issue: 02,
March-April, 2024

https://aspjournals.org/Journals/index.php/ijees

- Love, P. E. D. 2000. Construction supply chains. *European Journal of Purchasing and Supply*
- Mahdjoubi, L. & Yang, J. L., (2001) An intelligent materials routing system on complex construction sites. *Logistics Information Management*, 14(5/6), pp. 337-344.
- Narimah B.K (2008): Improving Materials Management On Construction Projects
- Obiegbu, M.E. (2012). Unique Roles of Professional Builders in the Society. Being a paper presented at the One day Seminar organized by the Rivers and Bayelsa States Chapter of the Nigerian Institute of Building held at Port-Harcourt, Nigeria on the 18th November.
- Ofori, G. (2015). Nature of the construction industry, its needs and its development:

 A review of four decades of research.

 Journal of Construction in Developing Countries 20(2): 115–135.
- Ofori, S. (2010). *Educational Management in Nigeria*. Nigeria Fourth Dimension Publishers.
- Oladiran, O.E (2002) Materials Wastage: Causes And Their Contributions' Level.
- Shitaw T. (2021) Ethiop. J. Sci. & Technol. 1 4(1): 1-19: Material Waste Minimization Techniques In Building Construction Project.

Thangjam S.E (2015) International Journal Of Geology, Agriculture And Environmental Sciences Volume – 3: Management Of Construction Waste Materials:

Advance Scholars Publication Published by

International Institute of Advance

Scholars Development

- Thomas, H.R., Horman, M.D., De Souza, U and Zaviski, I. (2002). Benchmarking of labor intensive construction activities: Lean construction and fundamental principles of workforce management. Rotterdam, Netherlands: International Council for Research and Innovation in Building and Construction
- Zimmer, Eric R. 2006. Improving Lean Supply Chain Management in the Construction
- Zimmer, Eric, Ossama Salem, Ashraf Genaidy, and Richard Shell. 2008. Case study: Lean supply chain management in the construction projects. Paper read at 16th Annual Conference of the Internal Group for Lean Construction (IGLC-16), at Manchester, United Kingdom.