Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

# EFFECT OF RAINFALL VARIABILITY ON LAND USE/LAND COVER DYNAMICS WITHIN ENUGU URBAN

#### <sup>1</sup>Dr. Onyia, Anthonia Nkeiruka and <sup>2</sup>Ijomah, Jude Obinna

<sup>1</sup>Enugu State University of Science and Technology <sup>2</sup>Federal Polytechnic, Ohodo, Enugu State **Email:** toniaim40@yahoo.com/ ijomahjude001@gmail.com DOI: https://doi.org/10.5281/zenodo.17158129

#### **Keywords:**

Rainfall
Variability;
Climate
Change;
Land
Use/Land
Cover
(LULC);
Enugu
Urban; GIS

#### **Abstract**

The importance of rainfall variability in understanding the dynamics of climate change and land use/land cover (LULC) changes in any region cannot be overemphasized. This study examined rainfall variability in Enugu urban and metropolis as it affects land use/land cover change and climate change. Secondary rainfall data were collected from the archives of the Meteorology Unit, Enugu State University of Technology, covering the period 1971–2020. The rainfall data were tabulated and analyzed in decadal format using descriptive statistics, frequency tables, means, and graphical representations. The annual mean rainfall for the period 1971–2020 was determined using line graphs, which revealed both normal and abnormal rainfall trends. The results showed higher rainfall in years such as 1995, 1997, 2008, 2012, 2018, and 2020, with total annual amounts reaching 2,170.9 mm and 2,173.9 mm respectively. Conversely, decreases in rainfall were observed in years including 1971, 1972, 1973, 1974, 1976, and 1983, with recorded values such as 813.4 mm, 889 mm, 947 mm, and 1,104.4 mm. The findings revealed significant variations in rainfall patterns in Enugu, accompanied by notable reductions in land cover over time. Furthermore, the study established a significant relationship between rainfall trends and land cover dynamics in Enugu urban area. The study recommends further research using remotely sensed imagery and GIS techniques to confirm whether the observed decrease in land use/land cover is solely attributable to rainfall variability. It also advocates for robust education and enlightenment programs to raise public awareness of rainfall trends in the study area, thereby promoting sustainable utilization of natural resources and enhancing understanding of land use/land cover dynamics for future research.

#### 1.1 Introduction

Rainfall variability is a key climatic feature that significantly impacts Africa's agricultural productivity and food production (Mensah et al.,

2019; Ogundari & Onyeaghala, 2021; Schlenker & Lobell, 2010). It also poses a serious threat to poverty eradication and sustainable development in Nigeria, as the country has a

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

> large rural population that depends directly on rainfall-sensitive economic and development sectors as well as natural resources for subsistence and livelihood (Oladipo, 2008; Osang, 2013).

> Over the years, many studies have investigated rainfall trends and variability in Nigeria, with most relying on tables and graphical plots to highlight the dynamics of rainfall changes (Adenodi, 2018; Akinsanola & Ogunjobi, 2014; Animashaun et al., 2020; Nnaji et al., 2016). Some studies have employed time-series analysis to investigate long-term fluctuations in rainfall (Ogbuene, 2010), while others adopted non-parametric tests to study rainfall trends (Obot et al., 2011).

Furthermore, there is growing evidence that climate change is exacerbating rainfall variability and increasing the frequency of extreme events such as land cover reduction, floods, droughts, and hurricanes (IPCC, 2007). Rainfall is one of the most important meteorological parameters affecting nearly all human activities (Obot, Chendo, Udo, & Ewona, 2010b). For instance, the amount of rainfall received in a region is a major determinant of the quantity of water available to meet agricultural, domestic, industrial, and power-generation needs (Sharad & Vijay, 2012).

According to Olatunde (2012), rainfall availability or non-availability is commonly used to determine the level of wetness or dryness during the growing season, making rainfall the single most important climatic element

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

influencing agriculture and water resource management. In recent times, the reduction of land cover in parts of Enugu metropolis has raised public concern that the urban center might be experiencing serious climatic shifts. This is largely attributed to high rainfall variability, which adversely impacts agricultural productivity and economic activities in the city (Mark & Kishtawa, 2014).

Consequently, studies of rainfall variability are crucial in mitigating the impacts of extreme climate hazards such as droughts, floods, and land cover degradation (FCC, 2007). This is particularly important because the amount of water available in the soil for crop utilization depends on key rainfall characteristics such as onset, duration, and cessation, which ultimately influence the success or failure of cropping seasons (Kisaka, Mucheru-Muna, Ngetich, Mugendi, & Mairua, 2015).

### 2.0 Study Location

Enugu is located approximately between latitudes 6°22′30″ and 6°39′10″ N of the Equator and longitudes 7°25′35″ and 7°40′45″ E of the Greenwich Meridian. The state is administratively divided into 17 Local Government Areas (LGAs) (see Figure 2.1).

Enugu State lies in the southeastern region of Nigeria at the foot of the Udi Plateau. It shares boundaries with Abia and Imo States to the south, Ebonyi State to the east, Benue State to the northeast, Kogi State to the northwest, and Anambra State to the west (Enugu State, Nigeria, Britannica, 2022).

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

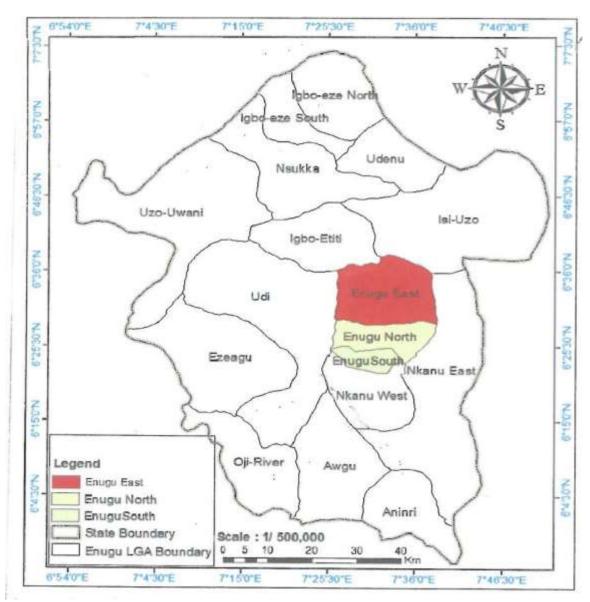



Figure 2.1: Map of Enugu State, showing the study area (Enugu Urban, comprising, Enugu East, Enugu North and Enugu South)

Source: Enugu State Ministry of Lands & Survey (2020)

### 2.1 Enugu Urban

Enugu urban area is centered around the capital city of Enugu State in southeastern Nigeria. Geographically, the area lies approximately between longitude 7°20′0″ E and latitude 6°40′0″ N. As the administrative and commercial hub of the state, Enugu urban plays a vital role in the socio-economic development of

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

the region, serving as a gateway to surrounding towns and local government areas.

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

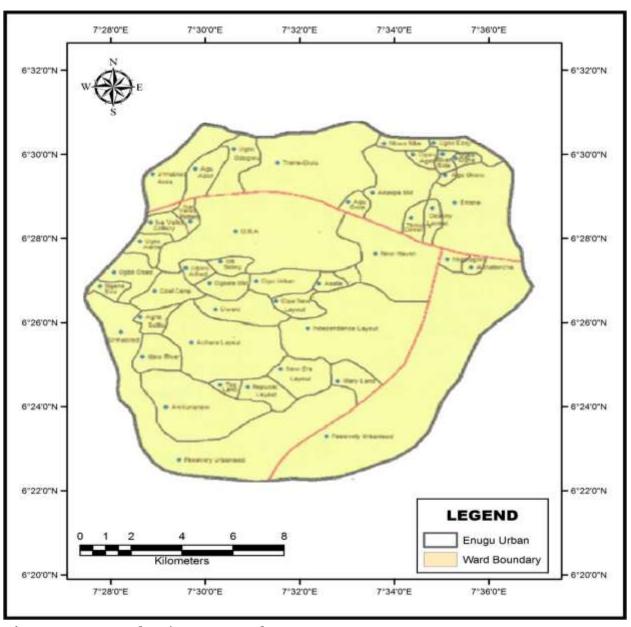



Figure 2.2: Map showing Enugu urban area.

**Source:** https://www.researchgate.net

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

Enugu, the capital city of Enugu State, lies on the railway line from Port Harcourt, about 150 miles (240 km) to the south-southwest, and sits at the intersection of major roads linking Aba, Onitsha, and Abakaliki. It is approximately a four-hour drive from Port Harcourt—historically a coalshipping hub in Nigeria. The city is also less than an hour's drive from Onitsha, one of Africa's largest commercial centers, and about two hours from Aba, another significant trading city in southeastern Nigeria.

Enugu enjoys relatively mild climatic conditions throughout the year. Temperatures range from about 17°C (60°F) in the cooler months to 28°C (upper 80s °F) during the warmer months. The city stands at an elevation of about 223 meters (732 ft) above sea level, with well-drained soils that support agricultural activities during the rainy season. The mean temperature during the hottest month of February is approximately 30.64°C (87.16°F), while the lowest average temperature occurs in November, around 15.86°C (60.54°F). Rainfall in Enugu varies seasonally, with the lowest average of about 0.16 cm³ (0.0098 cu in) recorded in February and the highest of about 35.7 cm³ (2.18 cu in) in July

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

(Enugu State, Nigeria, Encyclopedia Britannica, 2021).

#### 3.0 Materials and Methods

This study employed descriptive statistics for data analysis. Secondary data were collected from relevant government offices and credible online sources.

#### 3.1 Method of Data Collection

Rainfall data spanning January to December for the period 1971–2020 were obtained from the archives of the Meteorology Unit, Enugu State University of Technology, Enugu, Nigeria.

### 3.2 Method of Data Analysis

The collected rainfall data were analyzed using descriptive statistical techniques. Data were organized into tables and represented graphically to identify rainfall trends over time. Specifically, the annual rainfall data from 1971 to 2020 were grouped into decadal formats, clearer visualization enabling of rainfall variability across each decade. This approach also allowed for comparison with observed land use/land cover changes in the study area, providing insights into the relationship between rainfall patterns and environmental dynamics.

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

#### 4.0 Presentation of Result

#### 4.1 Analysis and result discussion

#### Table 4.1 Rainfall variability from 1971 to 1980 (Monthly Rainfall in mm)

|      |      |      |       |       | -     |       |       |       |       | _     | _    |     |
|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|-----|
| Year | Jan  | Feb  | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sept  | Oct   | Nov  | Dec |
| 1971 | 0    | 0    | 69.0  | 3.0   | 94.0  | 161.0 | 122.9 | 334.5 | 235.5 | 32.8  | 0    | 0   |
| 1972 | 0    | 0    | 3.0   | 25.1  | 123.4 | 154.2 | 165.4 | 224.8 | 213.9 | 18.5  | 0    | 0   |
| 1973 | 0    | 0    | 0     | 42.7  | 11.2  | 98.3  | 151.4 | 305.3 | 158.5 | 46    | 0    | 0   |
| 1974 | 0    | 0    | 0.3   | 18    | 60.5  | 174.5 | 431.1 | 129.2 | 251.7 | 39.1  | 0    | 0   |
| 1975 | 0    | 0    | 0     | 37.6  | 81.8  | 158.9 | 252.5 | 224.8 | 186.9 | 31.0  | 0    | 0   |
| 1976 | 0    | 0    | 0     | 1.3   | 174.5 | 96.8  | 150.9 | 201.4 | 121.8 | 135.4 | 6.9  | 0   |
| 1977 | 22.1 | 3.1  | 54.8  | 29.9  | 205.6 | 321.4 | 158.5 | 182.9 | 298.6 | 267.1 | 0    | 2.0 |
| 1978 | 1.8  | 2.0  | 102.3 | 236.4 | 239.5 | 489.6 | 87.0  | 183.8 | 364.6 | 260.4 | 15.4 | 0.3 |
| 1979 | 0.5  | 75.1 | 64.3  | 29.4  | 199.0 | 237.1 | 365.2 | 305.4 | 208.1 | 165.8 | 46.9 | 0   |
| 1980 | 0    | 24.2 | 56.7  | 76.0  | 257.0 | 228.7 | 228.6 | 326.7 | 594.6 | 176.8 | 74.4 | 0   |

**Source:** Meteorology Unit, Enugu State University of Technology Archives (1971–1980).

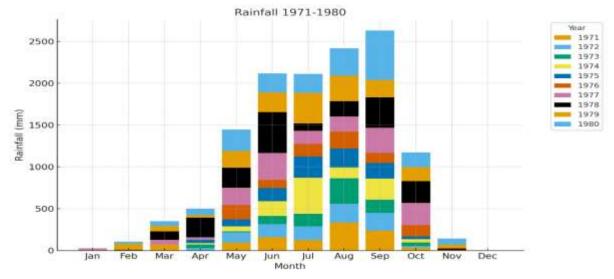



Figure 4.1: Rainfall variability graph from 1971 to 1980

Figure 4.1 illustrates the variability of rainfall in Enugu from 1971 to 1980. During this period, the lowest monthly rainfall occurred in January, with only 2.4 mm, while the highest rainfall was recorded in September, exceeding 2,500 mm. This pattern indicates that significant rainfall availability is concentrated between May and October, when monthly totals consistently rise above 1,000 mm. Conversely, from November to April, rainfall amounts generally fall below 500 mm, reflecting inadequate water supply during these months. This seasonal distribution suggests that the wet period (May–October) provides adequate water to support agricultural activities and vegetation growth,

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42 Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

whereas the prolonged dry months (November–April) contribute to reductions in land use/land cover within the study area during the observed decade.

Table 4.2: Rainfall Variability in Enugu (1981–1990): (Monthly Rainfall in mm)

| Year | Jan  | Feb  | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sept  | Oct   | Nov  | Dec  |
|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| 1981 | 4.3  | 1.6  | 30.9  | 83.8  | 194.6 | 219.2 | 270.6 | 182.4 | 395.9 | 327.6 | 0.0  | 0.0  |
| 1982 | 2.7  | 57.3 | 49.3  | 106.0 | 315.5 | 216.2 | 264.6 | 92.3  | 218.1 | 199.7 | 3.6  | 0.0  |
| 1983 | 0.0  | 0.0  | 4.0   | 3.3   | 190.0 | 101.1 | 251.4 | 92.2  | 248.2 | 24.2  | 0.0  | 2.7  |
| 1984 | 0.0  | 0.0  | 16.1  | 137.9 | 130.6 | 350.5 | 305.6 | 385.8 | 311.2 | 122.5 | 20.9 | 0.0  |
| 1985 | 16.6 | 0.0  | 206.1 | 127.8 | 291.7 | 202.8 | 193.5 | 462.6 | 259.4 | 157.8 | 21.6 | 0.0  |
| 1986 | 2.1  | 9.8  | 127.1 | 97.8  | 238.9 | 141.9 | 270.4 | 198.8 | 206.3 | 101.6 | 55.9 | 0.0  |
| 1987 | 0.0  | 15.7 | 33.0  | 148.7 | 173.6 | 200.5 | 245.1 | 292.3 | 222.7 | 135.7 | 0.0  | 0.0  |
| 1988 | 7.1  | 0.0  | 46.4  | 95.3  | 154.9 | 220.3 | 219.3 | 226.4 | 285.2 | 206.1 | 0.0  | 71.4 |
| 1989 | 0.0  | 0.0  | 4.4   | 167.9 | 278.7 | 182.6 | 162.2 | 413.4 | 217.4 | 217.1 | 0.0  | 0.0  |
| 1990 | 0.5  | 0.5  | 0.0   | 181.5 | 89.7  | 279.4 | 508.8 | 359.1 | 317.5 | 318.8 | 2.3  | 25.8 |

Source: Meteorology Unit, Enugu State University of Technology Archives (1981–1990).

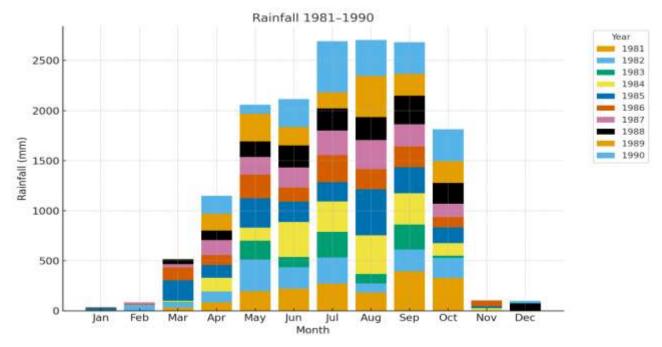



Figure 4.2: Chart showing Rainfall variability from 1981-1990

Figure 4.2 presents rainfall variability in Enugu between 1981 and 1990. The graph indicates that

maximum rainfall occurred from April to October, with monthly totals consistently

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

exceeding 1,000 mm. This period corresponds to the wet season, which supports vegetation growth and contributes to increases in land cover within the study area. In contrast, the months of January, February, March, November, and

December recorded significantly lower rainfall,

with values generally below 500 mm. This

seasonal reduction reflects the prolonged dry

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

period, which is often associated with water shortages, drought risks, and potential land degradation. Overall, the rainfall distribution highlights a distinct wet-dry seasonal cycle in Enugu during the decade, demonstrating the strong influence of rainfall variability on both land cover dynamics and ecological stability in the region.

Table 4.3: Rainfall Variability in Enugu (1991–2000): (Monthly Rainfall in mm)

|      |      |      |       |       | •     | _     |       |       |       |       |      |      |
|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| Year | Jan  | Feb  | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sept  | Oct   | Nov  | Dec  |
| 1991 | 0.0  | 37.6 | 62.4  | 198.1 | 346.4 | 244.8 | 320.2 | 264.5 | 230.5 | 253.5 | 25.0 | 1.4  |
| 1992 | 0.0  | 0.0  | 111.5 | 200.9 | 194.0 | 354.0 | 313.0 | 149.3 | 249.7 | 105.3 | 28.8 | 0.0  |
| 1993 | 0.0  | 5.1  | 62.7  | 148.9 | 109.9 | 263.7 | 186.7 | 389.8 | 243.5 | 72.9  | 82.9 | 11.6 |
| 1994 | 33.8 | 0.0  | 9.7   | 150.7 | 211.2 | 140.0 | 216.0 | 388.2 | 331.9 | 181.6 | 0.0  | 0.0  |
| 1995 | 1.6  | 0.0  | 90.2  | 194.1 | 263.9 | 356.7 | 340.2 | 435.1 | 192.4 | 261.7 | 35.0 | 0.0  |
| 1996 | 0.0  | 26.7 | 48.6  | 160.9 | 277.2 | 289.6 | 368.3 | 268.4 | 176.3 | 308.4 | 0.0  | 0.0  |
| 1997 | 0.0  | 0.0  | 111.6 | 261.3 | 376.1 | 345.0 | 226.8 | 235.0 | 392.3 | 264.3 | 68.1 | 4.1  |
| 1998 | 0.0  | 6.1  | 25.8  | 161.1 | 188.7 | 285.0 | 259.2 | 96.2  | 256.6 | 217.4 | 0.0  | 0.0  |
| 1999 | 18.4 | 15.7 | 30.0  | 103.6 | 223.5 | 316.8 | 206.4 | 200.2 | 195.1 | 313.4 | 0.0  | 0.0  |
| 2000 | 32.4 | 0.0  | 32.3  | 201.8 | 357.5 | 206.1 | 298.4 | 331.8 | 339.7 | 226.5 | 0.0  | 0.0  |

Source: Meteorology Unit, Enugu State University of Technology Archives (1991–2000).

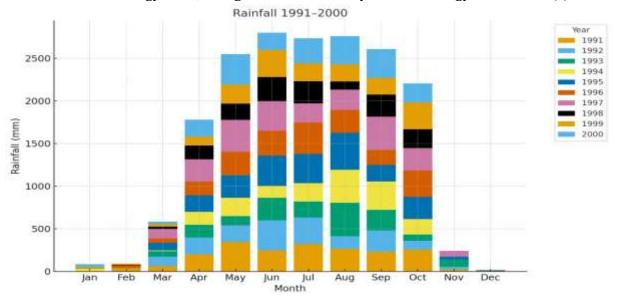



Figure 4.3 Rainfall variability graph from 1991 to 2000

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

Figure 4.3 illustrates rainfall variability in Enugu between 1991 and 2000. The graph shows exceptionally high rainfall in August 1995, with totals exceeding 400 mm. Similar rainfall levels were also recorded in August 1993 (389.8 mm) and August 1994 (388.2 mm), indicating consistent peak rainfall during the late rainy

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

season. This pattern suggests that periods of high rainfall are closely associated with rapid land cover growth and agricultural productivity, while periods of reduced rainfall correspond to declines in land cover, soil moisture stress, and possible environmental degradation.

Table 4.4: Rainfall Variability in Enugu (2001–2010): (Monthly Rainfall in mm)

| Year | Jan  | Feb  | Mar  | Apr   | May   | Jun   | Jul   | Aug   | Sept  | Oct   | Nov   | Dec   |
|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2001 | 0.0  | 28.0 | 72.5 | 305.5 | 273.8 | 188.8 | 152.0 | 130.6 | 407.9 | 118.1 | 0.0   | 0.0   |
| 2002 | 0.0  | 46.5 | 14.0 | 159.1 | 219.7 | 296.4 | 263.3 | 121.9 | 270.9 | 332.5 | 1.5   | 0.0   |
| 2003 | 0.0  | 0.0  | 2.9  | 74.6  | 234.3 | 287.0 | 400.4 | 290.2 | 334.4 | 227.4 | 39.8  | 0.0   |
| 2004 | 0.6  | 6.4  | 4.8  | 186.8 | 305.5 | 222.3 | 284.7 | 174.1 | 272.3 | 258.1 | 22.1  | 33.1  |
| 2005 | 0.0  | 26.9 | 20.8 | 115.6 | 170.0 | 258.3 | 277.6 | 292.0 | 283.6 | 228.5 | 24.1  | 19.1  |
| 2006 | 43.9 | 4.6  | 78.9 | 138.4 | 375.0 | 339.2 | 420.5 | 188.3 | 261.8 | 233.7 | 0.0   | 0.0   |
| 2007 | 0.0  | 9.4  | 70.0 | 105.7 | 325.0 | 292.7 | 290.3 | 255.1 | 299.7 | 240.2 | 0.0   | 0.0   |
| 2008 | 1.2  | 0.0  | 56.6 | 191.6 | 281.2 | 244.6 | 196.0 | 328.6 | 332.5 | 96.4  | 235.7 | 205.9 |
| 2009 | 50.1 | 0.0  | 11.1 | 112.4 | 347.1 | 206.2 | 280.5 | 154.3 | 204.7 | 384.6 | 18.9  | 0.0   |
| 2010 | 0.0  | 0.0  | 2.2  | 162.8 | 199.3 | 392.5 | 137.6 | 150.0 | 398.1 | 226.0 | 1.0   | 0.0   |

Source: Meteorology Unit, Enugu State University of Technology Archives (2001–2010).

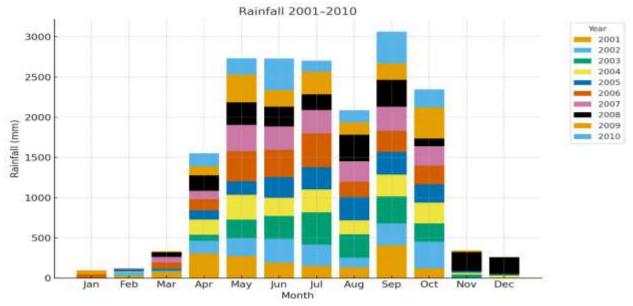



Figure 4.4: Chart showing Rainfall variability from 2001–2010 rainfall variability

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

Figure 4.4 illustrates rainfall variability in Enugu from 2001 to 2010. The trend indicates generally low rainfall compared to earlier decades, posing potential hazards to the environment. During this period, the maximum monthly rainfall rarely exceeded 500 mm, with the highest values recorded in July, reaching slightly above 400

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

mm. Conversely, the minimum rainfall occurred in the dry-season months (typically November to March), where values dropped below 100 mm. Such prolonged low rainfall conditions may have contributed to drought occurrences, land degradation, and reductions in land use/land cover within the study area.

Table 4.5: Rainfall Variability in Enugu (2011–2020): (Monthly Rainfall in mm)

| Year | Jan  | Feb  | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sept  | Oct   | Nov  | Dec  |
|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| 2011 | 0.0  | 44.6 | 118.4 | 118.1 | 220.2 | 188.5 | 195.4 | 237.0 | 439.0 | 166.1 | 2.0  | 0.0  |
| 2012 | 39.0 | 35.7 | 13.0  | 86.9  | 288.7 | 282.5 | 388.0 | 309.1 | 393.2 | 227.7 | 73.9 | 0.0  |
| 2013 | 35.1 | 31.7 | 31.7  | 146.0 | 296.7 | 279.4 | 173.9 | 336.4 | 430.1 | 113.5 | 0.0  | 98.3 |
| 2014 | 1.2  | 5.2  | 120.3 | 183.7 | 241.3 | 229.6 | 308.3 | 311.6 | 297.8 | 172.8 | 57.8 | 0.0  |
| 2015 | 0.0  | 82.8 | 117.5 | 21.6  | 239.4 | 260.4 | 363.5 | 302.3 | 380.3 | 198.9 | 42.2 | 0.0  |
| 2016 | 1.0  | 0.0  | 53.8  | 93.3  | 269.7 | 318.0 | 362.4 | 371.0 | 285.6 | 176.3 | 56.3 | 0.0  |
| 2017 | 1.9  | 0.0  | 63.6  | 181.6 | 375.0 | 319.3 | 420.5 | 385.9 | 326.6 | 137.3 | 0.0  | 0.0  |
| 2018 | 6.3  | 0.0  | 63.9  | 230.4 | 250.6 | 362.0 | 389.7 | 302.3 | 434.3 | 311.5 | 83.5 | 0.0  |
| 2019 | 0.0  | 0.0  | 130.0 | 197.4 | 212.4 | 284.8 | 258.5 | 193.1 | 326.3 | 224.4 | 78.6 | 0.0  |
| 2020 | 0.0  | 0.0  | 150.0 | 260.6 | 230.8 | 310.2 | 350.3 | 138.0 | 370.0 | 287.6 | 67.0 | 8.8  |

Source: Meteorology Unit, Enugu State University of Technology Archives (2011–2020).

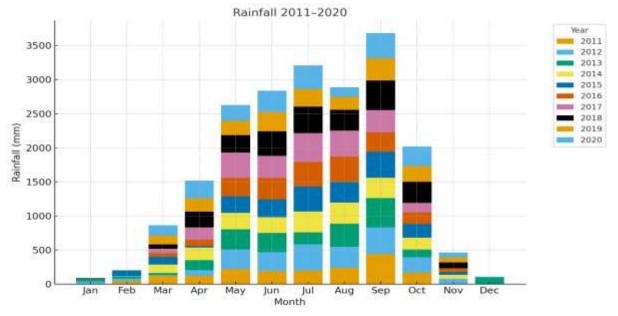



Figure 4.5 showing rainfall variability graph from 2011 to 2020

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

Figure 4.5 presents rainfall variability in Enugu between 2011 and 2020. The results show that peak rainfall was recorded in September, with values exceeding 350 mm, while the lowest rainfall occurred in the dry-season months of January and December, often below 100 mm. This distribution highlights the strong seasonality of rainfall in the area. Periods of high

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

rainfall, particularly during July-September, may result in negative environmental impacts such as erosion, flooding, and disruptions to economic activities. On the other hand, the months with minimal rainfall require reliance on alternative water sources to support agriculture and land cover maintenance within the study area.

Table 4.6: Annual and Mean Rainfall Variability in Enugu (1971–2020): (Rainfall in mm)

| Year | Annual Rainfall | Mean Rainfall |
|------|-----------------|---------------|
| 1971 | 987.9           | 82.325        |
| 1972 | 928.3           | 77.358333     |
| 1973 | 813.4           | 67.783333     |
| 1974 | 1104.4          | 92.033333     |
| 1975 | 973.5           | 81.125        |
| 1976 | 889.0           | 74.083333     |
| 1977 | 1546.0          | 128.833333    |
| 1978 | 1983.1          | 165.258333    |
| 1979 | 1696.8          | 141.4         |
| 1980 | 2043.7          | 170.308333    |
| 1981 | 1710.9          | 142.575       |
| 1982 | 1549.6          | 129.133333    |
| 1983 | 917.1           | 76.425        |
| 1984 | 1781.1          | 148.425       |
| 1985 | 1939.9          | 161.658333    |
| 1986 | 1450.0          | 120.833333    |
| 1987 | 1467.3          | 122.275       |
| 1988 | 1524.4          | 127.7         |
| 1989 | 1643.9          | 136.975       |
| 1990 | 2043.1          | 173.616667    |
| 1991 | 1961.9          | 163.491667    |
| 1992 | 1706.5          | 142.208333    |
| 1993 | 1577.0          | 131.475       |
| 1994 | 1663.1          | 138.591667    |
| 1995 | 2170.9          | 180.908333    |
| 1996 | 1919.4          | 159.95        |
| 1997 | 2284.6          | 190.383333    |
| 1998 | 1496.1          | 124.675       |
| 1999 | 1623.1          | 135.258333    |
| 2000 | 2026.5          | 168.875       |

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

| 2001 | 1677.2 | 139.766667 |
|------|--------|------------|
| 2002 | 1715.8 | 143.616667 |
| 2003 | 1891.0 | 157.583333 |
| 2004 | 1770.8 | 147.566667 |
| 2005 | 1645.4 | 137.116667 |
| 2006 | 2084.3 | 173.691667 |
| 2007 | 1891.7 | 157.641667 |
| 2008 | 2170.3 | 180.858333 |
| 2009 | 1769.7 | 147.475    |
| 2010 | 1669.5 | 139.125    |
| 2011 | 1729.3 | 144.108333 |
| 2012 | 2137.7 | 178.141667 |
| 2013 | 1941.1 | 161.758333 |
| 2014 | 1929.6 | 160.8      |
| 2015 | 2008.9 | 167.408333 |
| 2016 | 1818.8 | 151.567    |
| 2017 | 1701.8 | 141.816667 |
| 2018 | 2395.4 | 199.45     |
| 2019 | 1705.3 | 142.108333 |
| 2020 | 2173.3 | 181.108333 |

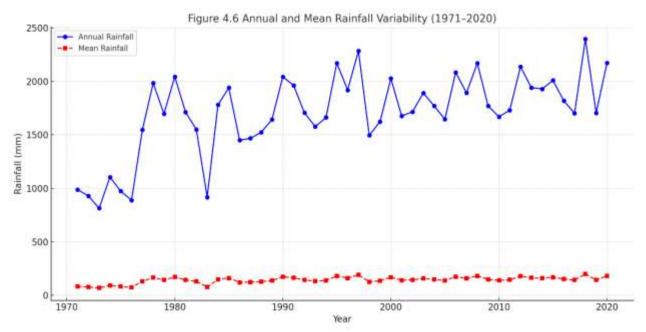



Figure 4.6 Annual and mean Rainfall variability graph from 1971 to 2020

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

From Figure 4.6 above, the period of high rainfall in the urban area was recorded between the years 1977–1999 and 2002–2020. Annual rainfall during these years ranged between 1546 mm and 2395.4 mm. Notable peak years include 1977 (1546 mm), 1978 (1983.1 mm), 1980 (2043.7 mm), 1995 (2170.9 mm), 1997 (2284.6 mm), 2006 (2084.3 mm), 2008 (2170.3 mm), 2012 (2137.7 mm), 2018 (2395.4 mm), and 2020 (2173.3 mm).

Conversely, decreases in rainfall occurred in the years 1971, 1972, 1973, 1974, 1976, and 1983, with annual totals ranging from 813.4 mm to 1104.4 mm. These low rainfall years suggest periods of water stress and potential drought conditions in the study area.

# 5.0 Summary, Recommendations, and Conclusion

### 5.1 Summary of Findings

Table 4.6 and Figure 4.6 present annual and mean rainfall variability in Enugu from 1971 to 2020. Results show significant fluctuations, with higher rainfall recorded in years such as 1995, 1997, 2008, 2012, 2018, and 2020 (with totals above 2000 mm). The highest rainfall occurred in 2018 (2395.4 mm), marking it as the wettest year in the 50-year record. This extreme rainfall likely contributed to flooding, erosion, and land cover impacts in the urban area.

The lowest rainfall was observed in 1973 (813.4 mm), 1976 (889.0 mm), 1983 (917.1 mm), 1972 (928.3 mm), 1971 (987.9 mm), and 1974 (1104.4 mm). These dry years suggest possible drought conditions, land degradation, and reduced land cover in the study area.

Advance Scholars Publication Published by International Institute of Advance Scholars Development https://aspjournals.org/Journals/index.php/ijees

These findings align with the study by Okwu-Delunzu, Ogbonna, and Ike (2015), who reported that increasing rainfall in Enugu contributed significantly to gully erosion and land degradation. They found that degraded areas covered 51% of total land area, with a strong positive correlation (r = 0.8) between cumulative rainfall and land degradation.

The observed variability may be attributed to atmospheric pollution, socio-economic activities, population growth, agricultural expansion, and technological development (Alexander, 2012). Overall, the 50-year rainfall record indicates significant variation in rainfall patterns and a reduction in land use/land cover over time in Enugu urban area.

### 5.2 Recommendations

- 1. Education and Awareness: Implement robust public education and enlightenment campaigns to raise awareness about the impact of human activities on atmospheric pollution, climate change, and rainfall variability.
- 2. Improved Monitoring: Establish more meteorological stations in the region to closely track changing rainfall patterns and provide accurate data for planning.
- 3. Flood and Drought Management: Residents of Enugu metropolis should be sensitized and encouraged to adopt adaptive strategies to cope with flooding during peak rainfall and drought during low rainfall periods, thereby sustaining agricultural and economic activities.

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

#### 5.3 Conclusion

The use of descriptive statistics and graphical tools in this study confirms substantial evidence of rainfall variability in Enugu urban area (1971–2020). Results affirm that rainfall is on an upward long-term trend, contributing positively to land cover, vegetation growth, and water availability. However, the high variability indicates shifts in rainfall distribution, with extreme wet years linked to flooding and erosion, while dry years signal drought risks and reductions in land cover.

This underscores the critical need for sustainable land management, climate adaptation strategies, and improved meteorological monitoring to mitigate the environmental and socio-economic impacts of rainfall variability in Enugu.

#### References

- Adenodi, R. A. (2018). A centurial analysis of rainfall variability in Nigeria. *Nigerian Journal of Technology*, *37*(2), 543–547. <a href="https://doi.org/10.4314/njt.v37i2.37">https://doi.org/10.4314/njt.v37i2.37</a>
- Akinsanola, A. A., & Ogunjobi, K. O. (2014).

  Analysis of rainfall and temperature variability over Nigeria. *Global Journal of Human-Social Science: B Geography, Geo-Sciences, Environmental & Disaster Management, 14*(3), 2–18.
- Alexander, B. C. (2012). Climate change: A case study of Port Harcourt city rainfall pattern. *Journal of Social Science and Development*, 1(3), 54–60.

- Animashaun, I. M., Adeoye, P. A. O., & Abatan, O. A. (2020). Rainfall variability and trend analysis over Lokoja, Nigeria. *Covenant Journal of Engineering Technology*, 4(2), 32–42.
- Encyclopedia Britannica. (2021). *Enugu State, Nigeria*. Retrieved June 15, 2021, from <a href="https://www.britannica.com">https://www.britannica.com</a>
- Encyclopedia Britannica. (2022). *Enugu I State, Nigeria*. Retrieved February 16, 2022, from <a href="https://www.britannica.com">https://www.britannica.com</a>
- Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC (M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson, Eds.). Cambridge University Press.
- Kisaka, M. O., Mucheru-Muna, M., Ngetich, F., Mugendi, D., & Mairua, E. (2015). Seasonal rainfall variability and drought characterization: Case of Eastern Arid Region of Kenya. In W. Leal Filho, A. Esilaba, K. Rao, & G. Sridhar (Eds.), Adapting African agriculture to climate change (pp. 53–71). Springer. <a href="https://doi.org/10.1007/978-3-319-13000-2">https://doi.org/10.1007/978-3-319-13000-2</a> 4

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

- Mark, O., & Kishtawa, C. M. (2014). Spatial analysis of Indian summer monsoon rainfall. *Journal of Geometrics*, 8(1), 40–47.
- Mensah, C. K., Kyerematen, R., & Adu-Acheampong, S. (2019). Impact of rainfall variability on crop production within the Worobong ecological area of Fanteakwa District, Ghana. *Advances in Agriculture*, 2019(123), 1–7. <a href="https://doi.org/10.1155/2019/7930127">https://doi.org/10.1155/2019/7930127</a>
- Nnaji, C. C., Mamah, C. N., & Ukpabi, O. (2016). Hierarchical analysis of rainfall variability across Nigeria. *Theoretical and Applied Climatology*, 123, 171–184. <a href="https://doi.org/10.1007/s00704-014-1341-y">https://doi.org/10.1007/s00704-014-1341-y</a>
- Obot, N. I., Chendo, M. A., Udo, S. O., & Ewona, I. O. (2010). Evaluation of rainfall trends in Nigeria (1978–2007). *International Journal of the Physical Sciences*, *5*(14), 2217–2222.
- Obot, N. I., Emberga, T., & Ishola, K. S. (2011). 22 years' trends of annual rainfall in Abeokuta, Nigeria. *Research Journal of Applied Sciences*, 6(4), 264–271.
- Ogbuene, E. B. (2010). Environmental consequences of rainfall variability and deforestation in South-Eastern Nigeria.

- *International Journal of Water and Soil Resources*, 1(1–3), 100–105.
- Ogundari, K., & Onyeaghala, R. (2021). The effects of climate change on African agricultural productivity growth revisited. *Environmental Science and Pollution Research*, 28(23), 30035–30045. <a href="https://doi.org/10.1007/s11356-021-12426-9">https://doi.org/10.1007/s11356-021-12426-9</a>
- Okwu-Delunzu, V. U., Ogbonna, C. E., & Ike, F. (2015). Rainfall variation and gully erosion in Nyaba River Basin of Enugu, South-Eastern Nigeria. *Unizik Journal of Geography and Meteorology*, 4(1).
- Oladipo, E. O. (2008). Some statistical characteristics of drought area variations in the Savanna region of Nigeria. *Theoretical and Applied Climatology*, 50(1–2), 147–155. https://doi.org/10.1007/s00704-004-0094-0
- Olatunde, A. F. (2012). The intensity of wet years in the Sudano-Sahelian region of Nigeria between 1941 and 2008. *Journal of Environmental Science*, 6(1), 44–53.
- Osang, J. E., Ewona, I. O., Obi, E. O., Udoimuk, A. B., & Kamgba, F. A. (2013). Analyses of radiation and rainfall pattern in Kano. *International Journal of Scientific & Engineering Research*, 4(9), 971–976.

Irish J. Env. E. Sci. Volume: 9; Issue: 05, September-October, 2025

ISSN: 2383 – 6345 Impact Factor: 5.42

Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. *Environmental Research Letters*, *5*(1), 014010. <a href="https://doi.org/10.1088/1748-9326/5/1/014010">https://doi.org/10.1088/1748-9326/5/1/014010</a>

Sharad, J., & Vijay, K. (2012). Trends of rainfall and temperature data for India. *Journal of Current Science*, 102(2), 1–6.